4,029 research outputs found

    Measurement of light mesons at RHIC by the PHENIX experiment

    Get PDF
    The PHENIX experiment at RHIC has measured a variety of light neutral mesons (π0\pi^{0}, KS0_{S}^{0}, η\eta, ω\omega, η\eta^{\prime}, ϕ\phi) via multi-particle decay channels over a wide range of transverse momentum. A review of the recent results on the production rates of light mesons in p+p and their nuclear modification factors in d+Au, Cu+Cu and Au+Au collisions at different energies is presented.Comment: 5 pages, 4 figures, talk given at Hard Probes 2008 conference in La Toja, Spain. submitted to EPJ

    The "Horizon-T" Experiment: Extensive Air Showers Detection

    Get PDF
    Horizon-T is an innovative detector system constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level. It consists of eight charged particle detection points separated by the distance up to one kilometer as well as optical detector subsystem to view the Vavilov-Cerenkov light from the EAS. The time resolution of charged particles and Vavilov-Cerenkov light photons passage of the detector system is a few ns. This level of resolution allows conducting research of atmospheric development of individual EAS.Comment: Initial technical note for Horizon-T experiment, updated with recent detector upgrades, 11/2016. Updated 12/2017 with minor edits. Large upgrade will be in another articl

    Slowing heavy, ground-state molecules using an alternating gradient decelerator

    Get PDF
    Cold supersonic beams of molecules can be slowed down using a switched sequence of electrostatic field gradients. The energy to be removed is proportional to the mass of the molecules. Here we report deceleration of YbF, which is 7 times heavier than any molecule previously decelerated. We use an alternating gradient structure to decelerate and focus the molecules in their ground state. We show that the decelerator exhibits the axial and transverse stability required to bring these molecules to rest. Our work significantly extends the range of molecules amenable to this powerful method of cooling and trapping.Comment: 4 pages, 5 figure

    Fractal growth of rotating DLA-clusters

    Get PDF
    corecore